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A Support Architecture for 
Reliable Distributed Systems 

1. Introduction 
This report describes the progress under the above funding from NASA. The funding 
is targeted towards building a integrated distributed operating system using the object 
model of computation. In this report the reseaxch effort will be termed the Clouds Pro- 
ject. 
A full description of the Clouds project, its goals, status and directions are described in 
the proposals and prior reports sent to NASA, as well as several publications, notably 
a paper in the 8th Internation Conference on Distributed Computing Systems. 

2. Progress Report 
The Clouds research team currently consists of five academic faculty, one research 
scientist and about 8 graduate students. Most of the funding is from the National Sci- 
ence foundation. The NASA support is used to augment the NSF support and currently 
it supports one Ph.D. student and some faculty time. 
The following sections describe the project results as a whole and not just limited to 
the NASA funds. We present the progress achieved in the report schedule as well as 
describe the current status and directions. 

2.1. Achievements 
This report covers two six month periods. The progress in the first half (i.e. June to 
December 1987) has been reported in detail in the proposal submitted to NASA in 
November 1987. The rest of this report details work that has been completed in the 
period December 1987 to June 1988. 
In the past six months, the Clouds project has implemented the Ra kernel and the sys- 
tem object interface. They are described in the following sections. 

2.1.1. The Ra Kernel 
The Ra Kernel is a completely redesigned minimal kernel for Clouds. Ra runs on 
Sun-3 computers and is designed to be portable to most virtual memory machines, 
even multiprocessors. 
Ra provides the basic services needed by object based operating systems. In particu- 
lar, Ra provides low level, short t e m  scheduling, segemnted 11lcm0ry management, 
virtual spaces and light-weight threads. A description of Ra is attached to this report as 
a supplement. 
The Ra kernel has been implemented and is currently Operational. 

2.1.2. The System Objects 
Since Ra is a minimal kernel, it does not provide most of the services necessary in a 
general purpose operating system. Ra however provides the support needed to plug in 
the desired services. These services are provided by modules called system objects. 
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System objects are dynamically pluggable modules that provide the system services. 
These system services include device handling, networking, object management and so 
on. Some of the critical system services have been currently implemented and most of 
the rest is under development. 

2.2. Current Status 
The research under progress in the Clouds project as of now is the continued develop- 
ment of system objects for support for a variety of services. Some of the notable ones 
are described below. 

2.2.1. The Device Handlers 
System objects providing the device services include tty drivers, Ethernet drivers and 
disk drivers. All these drivers will use a common interface to the kernel called the 
device class. The implementations of these interfaces and the terminal driver and Eth- 
ernet driver is underway. Some prototyping of the Ethernet protocol driver has been 
completed and the implementation under Ra is in progress. 

2.2.2. The User Object System 
Ra provides all the tools to build objects, but does not support objects directly. This is 
done to separate the mechanisms and the policy, as support for objects involve many 
policy decisions. The object manager is a system object that supports user level 
objects. 
The object manager provides the functionality of creating and deleting objects, provide 
naming services and manages the consistency needs for the objects. Most of the design 
work for the object manager has been completed and the implementation is in pro- 
gress. 

3. Conclusions 
The Clouds project is well underway to its goals of building a unified distributed 
operating system supporting the object model. The operating system design uses the 
object concept of structuring software at all levels of the system. The basic operating 
system has been developed and work is under progress to build a usable system. 
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Abstract 

Ro is a native, minimal kernel for the Clouds distributed operating system. Clouds sup-  
ports penistent virtual spaces, called objects and thread3 that direct computations throush 
these spaces. Clouds is targeted to run in a compute-server - data-sewer environrnenc. in 

which processing is done by threads executing on compute-servers (or workstations) and the 
objects will permanently raiding on data-servers (also called file-servers). Service between 
data servers and workstations is handled by a distrrbuted shared memoq paradigm. 

The major function of Ro is to providesegment-based virtual memory management, and 
short term scheduling. Ro provide support for objects through a primitive abstraction called 
virtual spaces. Virtual spaces are composed of unndows on segments. Ra provides support 
for threads throgh isibas. An isiba ia the unit of activity supported by Ro. 

The Clouds system will be supported on top of Ro, by adding system-objccis to Ra. 
System-objeets provide services, such as communication, thread management, atomicity sup- 
port, object naming and location, and device handling. Ro provides mechaaisms that allow 
systemsbject to be plugged in and out of Ro dynamically. Ro also provides a set of kernel 
classes that allow machine dependent variables and interrupt services to be accessed tiom 
system objects in a uniform machine independent fashion. Thus Re is a highly modular. 
expandable and flexible kernel. 

Ra is currently being implemented on a collection of Sun-3 workstations and will eventu- 
ally run on a heterogeneous network of cornputen of varying sizes including multiprocessors. 

This paper describes the architecture and functionality of Ra, preliminary details on 
i ts  implementation, and the envisioned strategy for building a distributed operating system 
(Clouds) on top of Ra (by adding appropriate system-objects). 

'This work har been funded by NSF grant CCR-8619886. 
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1 Introduction 

This paper is a description of the architecture of Ra. The motivation for this work comes 
from the need for a robust kernel that can support the development of a distributed object- 
based operating system called Clouds. Clouds is a research project at the Georgia Institute of 
Technology. The goal of the Clouds project includes the development of a a uniform. integrated 
computing environment (OS and applications) based upon the object paradigm (see below). 
Clouds is the operating system €or this environment. 

The first kernel for Clouds was a monolithic kernel. This prototype kernel executed on a set 
of minicomputers (Vax-11/750) and has been operational since 1987. As we enter a new phase 
of the project we have felt the need for a more robust, simple, portable and extensible kernel. 
Ra is the result of a fresh design attempt, using the minimal kernel approach. The design of Ra 
reflects the experience gained and lessons learned during the design, implementation a n d  use of 
the original Clouds kernel [SpaSG,PitSG]. 

1.1 The Minimal Kernel Approach 

A minimal kernel converts the underlying hardware into a small set of functions (or abstractions) 
that can be effectively used to build operating systems. Any service that can be provided outsitle 
the kernel (without adversely effecting the performance), is not included in the kernel. 1linima.l 
kernels normally provide memory management, low-level scheduling and mechanisms for i 11 ter- 

entity interactions such as message-passing or object-invocations. The minimal kernel idea I l a  

been effectively used to build message-based operating systems such as the V-system [CZ$:l!. 
Accent [ RR8 11, Ameoba [TMS 11. 

The minimal kernel method of building operating systems is akin to the RISC approach  used 

by computer acrchitects. Some of the advantages of minimal kernels are: 

0 The kernel is small, hence easy to build, debug and maintain. 

0 The separation of mechanisms from policy. The kernel provides the mechanisms. and t>he 

services above the kernel implement policy [WCC*74]. 

0 The functions provided by the kernel are expected to be efficient (fast). 

0 Most of the services of the operating system are implemented above the kernel. hence they 
are simpler to test, debug and maintain. The services can also be added. removed or 
placed without the need for recompiling the kernel, or in most cases without  the need for 
rebooting the system. 

1 



0 The same operating system can support a variety of services or policies (or even several 
instances of the same service) which is not generally possible in monolithic kernel situa- 
tions. 

A problem with minimal kernels in message-based operating systems has been performance. 
If a single server process provides a particular service, there is a lack of concurrency and hence 
the service waiting times become large. So multi-threaded servers are often used, at  the expense 
of more complex server code. This problem does not exist in monolithic kernels (such as Unix), 
since the kernel services are protected procedure calls, and can be executed concurrently by 
multiple processes. 

In an object system like Ra/Clouds, the services above the kernel reside in objects and 
are called upon by user processes like the protected procedure calls to systems services (not via 
interprocess message exchange). Hence services can be accessed concurrently by multiple clients. 
However object-invocation overhead is higher than the system-call overhead, therefore there is 
some degradation in performance compared to a monolithic kernel, but this is less than the cost 
incurred in a message kernel, as well the benefit of simpler code in the service routines. Also, 
the design of R a  maps the system object (system services) address space into the kernel address 
space to substantially reduce the service object invocation cost. Thus Ra achieves most of the 
benefits of a minimal kernel and does not suffer from some of the performance (or complexity 
of server) penalties. 

The rest of the paper is organized as follows. First we present a brief overview of Clouds. 
Then in Section 3 we present the design goals and objectives of Ra, the rationale for the minimal 
set of primitives supported by Ra and the hardware needs for implementing Ra. 

Section 5 provides details about the primitives supported by Ra, and section 6 shows the 
mechanisms used for providing extensibility in the Ra design. Finally section 8 shows how the 
R a  primitive abstractions will be used to build the Clouds operating system. 

2 The Clouds Operating System 

The design of Clouds has been influenced by the following concepts, that are basic to it. 

0 Clouds is a distributed operating system. 

The hardware environment for Clouds consists of a set of one or more computers connected 
by a network. The set of computers can be a collection of mainframes, or more desirably, a 

2 



set of compute-servers (or workstations) and a set of data-servers (or file-servers). Clouds 
integrates a l l  the sites on the network to form a single computing resource. 

0 Clouds uses the object-thread model. 

The unit of storage and addressing in the Clouds model is an object. The unit of activity 
in the Clouds model is a thread. The Clouds system provides a storage system that is a 
true single-level store [Mye82]. This paradigm is detailed in section 2.1 and in [DLA88]. 

0 Clouds supports consistency of data. 

Since all the data is contained in permanent, shared address spaces, failures can destroy the 
consistency of the data. The integrity of these address spaces are ensured by mechanisms 
(such as atomic actions) that guarantee consistency of the data [CD87]. 

2.1 The Object-Thread Model 

All data, programs, devices and resources on Clouds are encapsulated in entities called objects. 
An object consists of a named (virtual) address space, and its contents. A Clouds object exists 
forever (like a file) unless explicitly deleted. 

Threads are the active entities in the system, and are used to execute the code in an object. 
A thread can be viewed as a thread of control that executes code in objects, traversing objects 
as it executes. Threads can span objects, as well as machine boundaries. A thread executes in 
an object by entering it through one of several entry points, and after the execution is complete 
the thread leaves the object. An object invocations may pass parameters to the callee, and 
return parameters to the caller. Several threads can simultaneously enter an object and execute 
concurrently. 

The structure created by a system composed of objects and threads has several interesting 

properties. First, all inter-object interfaces are procedural. Object invocations are equivalent 
to procedure calls on modules not sharing global data. The modules are permanent. The 
procedure calls work across machine boundaries. Second, the storage mechanism used in object- 
based systems is quite different from that used in conventional operating systems. All data and 
programs reside in permanent virtual memory, creating a single-level store. 

The single-level store dispenses with the need for files. Files are special cases of objects, 
and can be implemented (by the user) if necessary. Similarly the shared nature of the objects 
provides system-wide shared memory, dispensing with the need for messages. Messages can be 
implemented by the user if desired. 
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A programmer’s view of the computing environment created by Clouds is the following. It 
is a simple world of named address spaces (or objects). These objects live in an integrated 
environment, which may have several machines. Activity is provided by threads moving around 
amongst the population of objects through invocation; and data flow is implemented by parame- 
ter passing. The system thus looks like a set of permanent address spaces which support control 
flow through them, constituting what we term object memory. 

To support the Clouds operating system, each compute engine in the network has to run a 
specialized kernel that supports mechanisms needed to manage objects and threads. The Ra 
kernel is a minimal kernel designed for Clouds. 

3 The Ra Kernel 

As mentioned earlier, the design of Ra was motivated by the need for a modular, extensible, 
maintainable and reliable kernel. To this end we have identified a set of design gods for the Ra 
kernel. 

3.1 Ra Design Goals 

The following are basic criteria that have been used in the design of Ra: 

0 Ra must be a minimal kernel. 

This decision was based on experience with testing and maintaining the first Clouds kernel. 

0 Ra should provide mechanisms to support the Clouds model of computation. 

Needless to say, that is the goal for Ra. Ra itself does not necessarily support objects and 
threads, but provides the mechanisms needed to do so. 

0 Ra should be extensible. 

R a  is intended to be used in a academic/research environment, which implies that it will go 
through many upgrades, additions of functionality, changes of techniques and so on. The 
design of Ita should incorporate ease of extension and ease of modification. To this end, 
our design uses kernel classes, plug-in system objects, and well defined interfaces inside 
the kernel, that enhance extensibility. 

0 Ra should be implementable on a variety of computers. 
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In addition to the design goals, Ra has to meet the following longer term goals to satisfy 
current plans for Clouds as well as future research interest. Note that the following functions 
are not supported in Ra, but the design of Ra should allow the following to be supported. 

0 Ra should provide mechanisms needed to support distributed shared memory. 

Ra is targeted to work in a compute-server - data-server configuration. To handle object 
invocation in such a network, we have designed a technique called distributed shored mem- 
ory[RAK87]. Distributed shared memory provides a means of viewing objects as existing 
in a single global distributed shared memory, where although the objects reside on a set 
of data-servers, they can be used anywhere on demand. 

0 Ra should provide mechanisms needed to support inheritance. 

Inheritance has emerged as a useful means of controlling complexity in object-oriented 
programming languages. We have identified a means of efficiently implementing multiple 
inheritance by taking advantage of “multiply mapped” virtual spaces. 

0 Ra should provide mechanisms needed to support resource location. 

Resource location has been identified as a critical issue to the performance of a distributed 
system such as Clouds [BerS7]. Ra must support a clean separation of mechanism and 
policy to allow implementation of a variety of resource location policies. 

0 Ra should provide mechanisms needed to support action management. 

Controlling consistency and concurrency of access to shared data is needed in the Clouds 
system. Action management needs support from the kernel, and the design of Ra should 
provide these functions. These include cooperation with object invocation, detection of 
read and write accesses to virtual memory, synchronization, and a means for constructing 
recoverable storage. 

0 Ra should provide mechanisms needed to support replication. 

While considering the incorporation of replication under Clouds, we realized that efficient 
replication schemes required modifications to the basic object invocation mechanism. Simi- 
larly, implementing quorum-consensus schemes [Giff 91 was best done by overriding Clouds’ 
location transparency. 

3.2 Ra Primitives 

For an effective minimal kernel kernel design, the set of kernel functions should not need constant 
revision, but should be able to support all the services required by the user level through properly 
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implemented system service routines. 

Given the following set of facilities required of Ra, we can derive the primitive abstractions 
that Ra should support. 

0 Ra should support the invocation mechanism since the basic activity in Clouds is object 
invocation. 

0 Ra should provide methods for supporting objects as objects are the most important entity 
in Clouds. 

0 Ra should provide support for threads, and support for scheduling since activity in Clouds 
is handled by threads. 

0 Ra should provide simple yet powerful virtual memory support mechanisms, since objects 
storage rely heavily on virtual memory. 

The need for computation leads to the need for processes and process scheduling. The 
object invocation support needs the ability to map memory spaces into process spaces. The 
object support needs the ability to map a collection of memory spaces into a single address 
space. 

In the design of Ra primitives, the basic unit of memory is a segment. A segment is used to 
hold data (or code) as an uninterpreted sequence of bytes. Some segments are permanent (data 
and code) and some are not (stacks, parameters). The permanent segments reside in partitions. 
Partitions reside on dat%servers and the segments axe provided by the partitions on demand. 
Thus, although Ra knows about the existence of partitions, partitions themselves are not part 
of Ra. 

Segments can be coalesced together (using a mechanism called ioindows) into a.n address 
space, called a virtual space. Each object is supported by one virtual space. The virtual space can 
live in any one of at least 3 hardware defined segments (or hardware-segments, see section 3.4). 
We call these hardware-segments the IC-space (for resident objects) the 2‘-space (for process 
specific data) and the O-space (for object virtual spaces). 

The basic services provided by Ra include the mapping mechanisms needed to provide sup- 
port for segments, windows, and virtual spaces; and the mechanisms needed to provide support 
for computations to access the required segments; and the demand paging of segments from 
partitions. 

In addition to the segment and space services, Ra provides support for lightweight processes 
called isisbas. An isiba is scheduled by the low-level scheduler (using time-slices) and can execute 
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code in any space to which the isiba is assigned. The assignment of isibas to virtual spaces form 
the basis of object invocation mechanisms. 

The attributes and support mechanisms for segments, windows, virtual spaces and isibas are 
discussed in Sections 5 and 6. Section 8 shows how these abstractions are used to form the final 
support mechanisms for Clouds objects and threads. 

3.3 Ra System-Objects 

In addition to the basic services defined above, Ra, needs to provide interfaces for other operating 
system services. Ra does not provide most of the services that a general purpose operating system 
provides, especially when these services require policy decisions. What Ra does not provide 
include naming support, communication support, partitions, action management, replication 
support, and accounting support. 

Ra provides a mechanism, by which operating systems services can be implemented via 
system-objects. A system-object is like a Clouds objects in most respects except that it lives in 
a protected address-space, often is resident (as opposed to paged) and has access to some of the 
data structures defined by Ra. Unlike the other Clouds objects, the state of a system-object 
need not survive system crashes, and are re-initialized at reboot. The system-services can be 
implemented as system-ob jects. 

Like Clouds objects, system-objects can be invoked by user processes, as well as by Ra itself. 
Thus Ra can use hooks provided by system-objects to get access to a particular service if that is 
available. For example, management of segments may differ depending on whether the segment 
is a “recoverable” segment or not. For recoverable segments, the action manager provides hooks 
that Ra uses to page the segment in and out. 

Some system-objects are mandatory, since Clouds cannot function without these. Examples 
include the partition handlers, the communication drivers and the tty drivers. Most system- 
objects are optional, such as naming services, action management, accounting, date and time 
handlers. 

Ra is designed to allow plug-in system-objects. That is, system-objects can be loaded or 
removed at runtime. The system-objects are not linked to the kernel, the binding is dynamic. 
More details on system-objects are in Section 6. 
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3.4 Ra Hardware Architecture Assumptions 

Ra is targeted to run on a variety of commonly available hardware, especially workstations. 
For efficient implementations, we assume that the hardware should have virtual memory and 
networking support. The characteristics of Ra’s minimal hardware support are: 

e A large, linear, paged or segmented virtual memory. In object-based systems computation 
proceeds through object invocations. An implementation typically requires the unmapping 
of an object space and the mapping of another for each object call and return. Thus, some 
form of paged or segmented virtual memory scheme is vital for the efficient implementation 
of Ra. 

e Three distinct machine-level virtual spaces which may be eficiently manipulated separately. 

The hardware supported virtual address space of the CPU should consist of (at least) 
three distinct spaces, that we call the K , 0 and P spaces, for kernel, object and process, 
respectively (Figure ??). The kernel and system objects are intended to be mapped into 
the K space, the current process is intended to be mapped into the P space, while the 
current object is intended to be mapped into the 0 space. With the exception of the I< 
space, different virtual spaces will be constantly mapped and unmapped into the P and 0 
spaces (Figure ??). In general, the hardware virtual space can conceptually be divided into 
three segments by appropriate use of the the high-order bits in a virtual address. However 
this can lead to very large page table. Thus the hardware needs to handle segmented 
virtual spaces. 

e User/system privileges and page-level read and write protection. 

Most architectures provide at least user and supervisor execution modes and the ability to 
protect memory, based on the current mode and the operation attempted. The ability to 
apply a protection specification to a range of memory will also be useful. Page level read 
write protection, though not mandatory, will allow us to automate thv lockinc: support 
needed by action managers. The detection of a fresh access to a page of data by a thread 
can be detected and analyzed (read access or write access) and thus set read or write locks 
as appropriate. If this facility is missing, language processors have to generate code for 
locking data pages. 
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4 Related Work 

The design of R a  covers two areas of active research, that is, the development of object-based 
systems and the development of minimal kernel based systems. Some of the notable projects 
that have implemented object based operating systems are Eden [ABLN85], Cronus [STB86], 
and Argus [Lis83]. All these systems structure the kernel as a process running on top of Unix. 
Thus the kernel in these systems are neither native nor minimal. 

The Alpha kernel [J*85] used by the ArchOS project and the Clouds kernel [Spa861 are some 
of the native kernels used in object-based operating systems. Neither are minimal kernels. 

Minimal kernels have been used quite extensively to build message-systems. Some of the 
notable examples are the V-system [CZ83], Ameoba [TMSl], Accent [RR81], and Quicksilver 
[HMSC87]. 

5 The Ra Primitive Abstractions 

The four primitive abstractions recognized by Ra are segments, virtual spaces, isibas and parti- 
tions. The R a  primitive abstractions reflect the mechanisms needed by an object-based system; 
that is segments reflect logical data units, virtual spaces reflect larger modules of data and code, 
isibas reflect computation and partitions reflect long-term storage. 

In the object model of computation a single thread of activity spans many addressing do- 
mains. Ra dissociates the concept of an address space from the concept of a computation by the 
distinction between the virtual space and the isiba. Similarly there are many forms of data that 
are used in the domain of one virtual space. Examples are executable code, stacks and heaps, 
logical clusters of data (or lockable units), parameters. This leads to structuring of the virtual 
space as a set of segments. Closely associated with the assembling of segments into virtual 
spaces is the concept of windows. A window allows us to map a range in a segment to a range in 
the virtual space, giving a completely general composition mechanism. The non-volatile nature 
of most segments needs a repository for them. This is provided by the partition abstraction. 

5.1 Segment 

Segments are the basic building blocks provided by Ra. A segment is an uninterpreted, ordered, 
set of bytes. Bytes in a segment are addressed by their displacement from the beginning of the 
segment, and the segment is identified by a system-wide unique sys-id. 
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Segments are explicitly created and persist until explicitly destroyed. They may be of arbi- 
trary length and their size may vary during their lifetime. A segment has a set of attributes, 
which include length, types, and storage methods. Certain attributes are considered immutable 
and remain as set throughout the life of the segment. Other attributes such as length, and 
whether a segment is sharable , are considered mutable attributes and may be altered during 
the life of the segment. 

One major characteristic of a segment is its storage attributes. These attributes will make 
guarantees about the behavior of accesses to the contents of a segment in the presence of failures. 
For example, a voZatiZe segment is guaranteed to  have zero-filled contents on first access, following 
a failure of the system that hosts the segment. Changes to the segment are guaranteed to persist 
upmto the first system failure following the modification or the next modification. A recoverable 
segment guarantees that changes persist across system failures. Thus segments with attributes 
refer to particular methods of using hardware to support storage. 

In addition to providing naming and addressing for bytes in a singlelevel store, segments may 
be shared between virtual spaces. That is, a given location in a segment may be simultaneously 
mapped by two or more virtual addresses so that concurrently executing isibas may share a 
common store. Activities may then communicate using any agreed upon protocol through this 
shared store. Some variations of sharing are possible and these are described in Section 5.2. 

A special form of segment called a fast segment requires minimal partition support and is 
highly optimized. Fast segments are volatile and may not be shared. Because of these restric- 
tions, they may be accessed very efficiently and are used in situations where high performance is 
required. One common use of fast segments is for passing parameters during object invocation. 

5.2 Virtual Space 

Ra virtual spaces are an abstraction of the notion of an addressing domain and provide a 
metaphor for manipulating virtual memory mapping mechanisms. Conceptually, a virtual space 
is a collection of sub-ranges of a set of ordered segments. 

A Ra virtual space is implemented by a segment called the virtual space descriptor which 
contains a collection of windows (Figure ??). Each window identifies a segment, a range of 
virtual addresses in the space, and locations in the segment that back the designated virtual 
addresses. The term window emphasizes that ranges of virtual addresses need not map to an 
entire segment but may map to portions of segments. Windows also describe the protection 
characteristics of ranges of the virtual space such as read-only or read-write. 

Note that protection is a characteristic of a virtual space and not of its associated backing 
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segments. Thus, a particular segment may be read-write accessible when it is associated with 
one virtual space, but read-only when it is associated with another virtual space. 

A virtual space is composed (or built) by a sequence of attach operations on segments. 
Attaching a segment to a virtual space associates a range of addresses in the virtual space to 
a range of offsets in a segment. The attach operation requires as parameters a virtual space 
descriptor, a segment-id, a length (of the region to be defined by the association), a starting 
virtual address in the space, and a starting offset into the segment. The attach operation defines 
a one-teone mapping between virtual space addresses and segment locations such that virtual 
addresses starting at the designated address are associated with segment locations starting at 
the offset and continuing for the length specified. That is, if virtual address z is associated with 
segment offset y, then virtual address z + 1 is associated with segment offset y + 1. Note that 
a virtual address range defined by an attach operation must fall entirely within the specified 
segment . 

The mapped ranges in a virtual space may not overlap, but ranges in the virtual space may 
remain unmapped. Thus, a single virtual address may not resolve to two or more segment 
locations but virtual spaces may have "holes" in them. Virtual spaces may share segments (or 
ranges of locations in segments). No synchronization or access control is implied by an attach 
operation. Also, a segment may be mapped more than once to a single virtual space; that is, 
two or more windows in a single virtual space may refer to a single segment. Multiple mapping 
can happen in two ways: either two or more windows in the space refer to disjoint regions of 
a single segment, or two or more windows in the space refer to overlapping regions of a single 
segment. In the second case, distinct virtual addresses in the same space resolve to the same 
segment location. 

The detach operation undoes the work of attach and removes the association between a range 
of virtual addresses and range of offsets in a segment. 

The activate operation on virtual spaces conceptually provides the kernel with the informa- 
tion in the virtual space's descriptor. Since the window descriptor is stored in a segment, the 
virtual space activate operation can be described in terms of operations on segments. A virtual 
space is activated by supplying the kernel with the sys-id of the segment that contains the vir- 
tual space descriptor. The kernel then communicates with the segment's controlling partition 
(see section 5.4) to activate the descriptor segment if necessary and then attach it to the kernel 
virtual space. In this way, the descriptor's contents become visible to the kernel. Once the 
descriptor is attached, some of its information is stored redundantly in kernel data structures 
for efficiency. 

Activate may be seen as a notification to prepare for further activity on the virtual space. 
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When a virtual space is activated, the kernel allocates segment and page map tables in antic- 
ipation of the virtual space being mapped into the hardware P or 0 spaces. These structures 
are initialized according to the window descriptions in the virtual space descriptor. Attach and 
detach operations will cause these mapping tables to be updated as appropriate. A virtual 
space must be activated before operations such as attach and detach may be performed on it. 
Such operations will activate the virtual space implicitly when required. The companion opera- 
tion, deactivate, updates the descriptor to reflect any changes necessary, detaches the descriptor 
segment, and deallocates segment and page maps used by the virtual space. 

Install, map8 the virtual space into the P or 0 space. If the specified virtual space has 
been activated, then the kernel simply needs to update the hardware segment and page tables 
to reflect the corresponding tables already constructed and maintained by the kernel. If the 
specified virtual space has not already been activated, the kernel will activate the space, and 
then install it. Segments may continue to be attached and detached while a virtual space is 
installed. In this case, the attach or detach operation will update the virtual space descriptor 
as well as modify the hardware mapping tables. A segment is attached dynamically when it is 
attached to an installed virtual space, and passively when it is attached to an uninstdled space. 

There are three varieties of virtual spaces, depending upon where a virtual space is installed. 
The virtual space which maps into the hardware K space is called the kernel space or kernel. 
Similarly, a virtual space which is mapped into the P space (or which will be mapped into the 
P space) is called a process virtual space. A virtual space which maps into the 0 space is called 
an object virtual space. 

5.3 Isiba 

Ra isibas are an abstraction of the concept of computation or activity and are intended to be 
the lightest- weight unit of computation. 

An isiba may be assigned a virtual processor by the operation install. The processor is 
relinquished when the remove operation is performed on the isiba. An isiba is said to be active 
after it is installed and before it is removed; otherwise, it is inactive. Isibas are composed of two 
segments: a contezt segment and a stack segment. Each segment contains data describing the 
activity of the isiba it composes. 

The context segment contains the kernel accessible state information describing the compu- 
tation such as the program counter and machine register contents. These values can be accessed 
as attributes of the isiba. When an isiba is active, some of its attributes may not reflect the 
current state of the isiba, but only a recent state. These attributes, such as the values of the 
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machine registers, are called transient. When an isiba is inactive, all attributes represent the 
most recent state of the isiba. (This is analogous to the PCB of a process in a conventional 
kernel). 

An isiba’s stack segment contains the call stack of the computation. The stack is represented 
by a separate segment because it is a user accessible component of the isiba. Placing the isiba’s 
stack in its own segment also allows a simple implementation of the model of computation in 
which a single activity may execute in multiple address spaces. A distinct stack segment is 
allocated to the isiba for each virtual space in which it executes. More than one stack segment 
may exist at  any instant if the transfers from one virtual space to another are viewed as nested 
traversals. However, only one stack segment is considered the current stack of the isiba. 

Like segments, isibas are uniquely identifiable by a sysid. Isibas have four required attributes, 
scheduler, privilege, 0 space, and P space. The scheduler attribute identifies a scheduler system 
object to invoke when a high-level scheduling decision concerning the isiba must be made. 
Privilege is a transient attribute that describes the processor mode (kernel or user) in which 
the isiba is executing. Privilege is used to define resources accessible to the isiba at any given 
moment. Finally, each isiba has two associated space attributes which identify the virtual spaces 
which must be mapped for the isiba to run. Either or both of these attributes may be null. If 
both attributes are null, then it is assumed that the isiba will execute entirely within the kernel 
address space (K space) which is always visible and need not be mapped for the isiba to run. 
Typically, the context segment of the isiba will be mapped into the kernel space and the stack 
segment into the P space; however, other schemes are possible. 

When an isiba is installed, two parameters are provided to the kernel: a time quantum, and 
a maximum execution time. The isiba is placed on a queue along with other isibas waiting to 
execute (the ready list). A kernel entity known as the short-term scheduler (STS) periodically 
receives clock interrupts. On each interrupt, the STS determines if the currently executing 
isiba’s time quantum has expired. If the isiba’s time quantum has not expired, it continues 
execution. Otherwise if the cumulative execution time is less than the maximum, it is enqueued 
on the ready list once again and the STS removes the isiba at the head of the ready list and 
prepares the processor for it to run. If the cumulative execution time of an isiba has exceeded 
its maximum execution time, the STS calls the high level scheduler associated with the isiba, 
which will decide what to do with it. This procedure, called dispatching the isiba, may require 
the kernel to remap the P and 0 spaces. If the newly dispatched isiba has the same P and 0 
space attributes as the previous isiba then no remapping is required. In this case, the two isibas 
are said to be executing concurrently within the same address spaces. If both space attributes 
of the new isiba are null then it runs, by default, in the kernel address space. The stack and 
context segments of the isiba must be’attached to one of its associated spaces for it to execute. 
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Note that the space attributes may change frequently while the isiba is executing. 

An isiba may be removed by another isiba executing with appropriate privileges or an isiba 
may remove itself. In either case, the destination of the removed isiba must be specified. Typ- 
ically, this will be a queue representing a synchronization variable or event. When an isiba is 
removed by another isiba it may only need to be removed from the ready queue. If the isiba 
removes itself (Le. blocks) or if the isiba is removed by a concurrently executing isiba on a 
multiprocessor implementation of Ra, then another isiba must be dispatched in addition to the 
designated isiba being removed. 

Isibas may be used as demons within the kernel or they may be associated with a virtual 
space to implement “heavier” forms of activity such as Clouds threads. Using isibas to implement 
threads is illustrated in Section 8. 

5.4 Partitions 

Segments are primitive in Ra but supporting certain segment attributes such as recoverability 
may require extensive policies. These policies should be kept out of the kernel. Also, it is not 
possible to predetermine all segment attributes. Thus we need a mechanism for handling at- 
tributes which might change as the operating system evolves. For this reason, a segment handler 
and repository called the partition is introduced. The partition is responsible for realizing, main- 
taining and manipulating segments. Although, partitions are a Ra primitive abstraction, and 
the existence of partitions is crucial to the operation of Ra, the partitions are not part of Ra. A 
partition handler is a Ra system-object. If the partition is stored at a remote site (dabserver) 
the server runs a cooperating part of the partition code, to get the segment. 

Each segment is maintained by exactly one partition and a segment is said to reside in that 
partition. Initially, a segment resides in the partition in which it was created. The partition in 

which a segment resides is referred to as its controlling partition. All operations on a segment 
with the exception of accessing its contents are performed by its partition and are initiated by 
requests to the partition. 

Several operations are possible on segments via their controlling partitions. Segments may 
be created and destroyed and they may have their mutable attributes changed as described 
previously in Section 5.1. Segments may also change their partition of residence, that is, they 
may migrate. Migration may be desirable to improve the locality of reference to the segment 
and its contents. Finally, segments may be explicitly activated and deactivated. Activating a 
segment prepares the controlling partition for further activity relating to the segment and returns 
summary information about the segment and its attributes to the calling entity (typically the 
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kernel). Deactivating the segment informs the partition that further access to the segment 
is unlikely in the near term. Reading and writing the contents of a segment are considered 
operations on the associated virtual space. 

Alternative storage hardware such as write-once optical store can be easily integrated into 
Ra by introducing an appropriate segment attribute and by implementing a partition to support 
that attribute. Partitions are themselves implemented as system-objects. References to device 
drivers that access physical storage are encapsulated in partitions. 

Segments may also be remotely activated. Remote activations are managed by a local parti- 
tion called the mediating partition. The mediating partition receives the activation request and 
then cooperates with a remote partition to activate a copy of the segment locally. Segments may 
be shared remotely as well as locally and thus there may be more than one mediating partition 
for each segment. 

Since segments are named by a system-wide unique sysid, remote activations require that 
the desired segment first be located, that is, the node actually containing a permanent copy 
of the segment be identified. (Typically, each partition is itself associated with either a node 
where a permanent copy of its segments is to be found or a method for consulting all or a 
subset of the nodes containing permanent copies of segments). This allows the system to use 
different location methods depending on the characteristics of the segments to be located (for a 
more thorough discussion of the performance issues related to resource location in distributed 
systems see [Ber87,ABA88,AAJK87]). A policy-making object called the partition manager 
may be consulted to determine the appropriate partition to be used for a particular activation 
request. 

Distributed shared memory [RAIC37,LH8G! is implemented in partitions that support seg- 
ments with attribute dsm. It an extension of the shared memory model to distributed systems. 
A set of operations are provided on shared segments and the partition maintains the state of 

the shared segment though a coherence protocol. The partitions take on the responsibility of 
acquiring the current copy of a segment on demand. 

Distributed shared memory is the mechanism used to run Clouds in the workstation environ- 
ment. Instead of sending the computation to a remote node, the required segments are brought 
from the remote node to the local machine. The remote node is the repodory of the object (or 
the set of segments). 
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6 Mechanisms for Achieving Extensibility 

Ra system-objects provide structured access to kernel facilities which are grouped into collections 
or modules called kernel classes (Figure ??). The operations available on the Ra kernel classes 
collectively constitute the Ra virtual machine. Ra’s system-ob jects and kernel classes together 
form the basis of Ra’s claims of extensibility. This section describes system-objects and kernel 
classes, and how they will be implemented, and provides examples of their use. 

6.1 System-Ob jects 

Certain system-ob jects are designated essential. Essential system-objects provide services that 
are necessary for the system to function yet that admit to a variety of implementations. Virtual 
memory page placement and replacement policies are good examples of services which must be 
provided by one or more essential system objects. Such functions certainly do not belong in 
a minimal closed kernel. Many different policies are possible and the correct choice of policy 
may depend on the configuration and pattern of use of the system in question. Thus, on the 
one hand, we have a service which must not be placed in the kernel, and, on the other hand, 
we have a service which is absolutely essential for the correct operation of our system. Thus 
the introduction of essential system-objects. By moving such services outside the kernel the 
minimality of the kernel is retained, as well as the support for extensibility and flexibility is 
maintained. 

System-objects may be viewed as a structured, controlled means of access to kernel functions 
and data structures. Viewed from a different perspective, system-objects represent a route to 
the eflciency of the kernel. They allow the system-object programmer access to trusted system 
functions with minimum overhead. System-objects are themselves trusted objects; that is, they 
are assumed to execute correctly. An error in a system-object may corrupt the entire processor 
which the system-object is executing on. System-objects provide a traditional object interface to 
the rest of the system and they are invoked, at the linguistic level, in the same manner as other 
user objects. Invocations on system-objects are actually implemented by means of protected 
procedure calls on the kernel for efficiency. 

System-objects implement (encapsulate) policy and provide access to kernel efficiency when 
needed. Most systems provide a set of kernel primitives which can be combined in some fashion to 
provide new services. However, often the facilities for combining kernel primitives are restrictive 
and inefficient. For example, if a system-service is implemented by a traditional user-level process 
each access of that system-service will require an expensive process context switch. System- 
objects represent a means of providing both extensibility and efficiency while maintaining our 
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desired goal of a minimal kernel. 

System-objects serve as intermediaries for providing system-services. Many such services may 
be provided by user-level objects and system-ob jects should be introduced only when efficient 
access to protected kernel facilities is required. In the spirit of a minimal kernel we have argued 
that the kernel should contain only those facilities which cannot be located outside the kernel. 
We make a similar argument concerning system-objects. System-objects should contain only 
those facilities which cannot be reasonably provided by user-level objects. As an example, a 
print spooler should probably not be made a system-object. The spooler requires only services 
which can reasonably be expected to be provided by system-objects such as synchronization and 
bulb data transfer. A printer device driver, however, is a likely candidate to be made a system 
object. A device driver will need to access device registers. and will need to accept and post 
interrupts. 

System-objects may also be loaded dynamically to introduce and remove services. Thus 
Ra supports plug-in system-objects. There are many advantages to such a feature. First, such 
dynamic loading allows kernel extensions to be introduced in the form of system-objects without 
the need for recompiling the kernel and rebooting the system. Second, various configurations of 
system-services can be loaded based on the capacity and pattern of use of a given machine. For 
example, a small micro version of Ra/Clouds need not support the full range of system-services 
provided by larger systems. Third, dynamic loading of system-ob jects simplifies developing and 
debugging new system-services. Fourth, multiple versions of a particular service can coexist 
for comparison and analysis under the same load conditions. For example, two object location 
mechanisms may be implemented and executed in pardel  to compare their efficiency. 

Since system-ob jects may be introduced and removed dynamically, special kernel operations 
provide a means for facilitating the orderly transfer of responsibility for a given system-service 
from one system-object to another. Such a transfer of control may, in general, involve a complex 
protocol or it may, in special cases, be as simple as a change of registry. 

System-objects are mapped into the kernel or K space when loaded and remain present, 
accessible to all processes and objects, until they are unloaded. System-objects are relocatable 
so that they may be loaded in differing places but this relocation is only done at load time, 
which is intended to be infrequent. 

6.2 Kernel Classes 

System objects "see" the kernel through kernel classes. Kernel classes are collections of kernel 
data and procedures to access and manipulate that kernel data. Thus kernel classes are like 
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the familiar abstract data types or modules of software engineering. We suggest that they be 
viewed rather as mizin classes. Mixins are special object classes used in various object-oriented 
programming systems which are designed, not to be instantiated, but rather, to be used to 
compose new object classes. In this sense, they support a powerful form of multiple inheritance. 
In R a ,  system objects import or inherit specified kernel classes. System objects may invoke 
operations only on kernel classes which have been explicitly imported. Code and data from 
other kernel classes are protected at the linguistic level' and may not be accessed. Run-time 
protection will probably be too costly in general on traditional hardware although it should be 
possible to request hardware supported protection while a system object is being debugged. 

There are five collections of kernel services. These services itre defined as classes. These 
are the Virtual Space class, Isiba class, Synchronization class, Device class, and System-Object 
class. 

The virtual space class provides system-objects with functions and data structures that 
manipulate segments, windows and virtual spaces. Using this class, we can build services that 
create and delete objects, provide invocation support and so on. The isiba class provide some 
isiba control primitives. Controlling the computation in the operating system, creating threads 
and controlling their execution can be acheived through this class, The synchronization class 
provides isiba synchronization primitives that are useful for locking and recovery control. The 
device class provides access to the device specific registers and interrupt vectors. These are used 
by system-objects that implement device services and need to install interrupt handlers. Finally, 
the system-object class, allow system objects themselves to control the behavior of other system 
objects, that is installation and repeal of services can be handled. 

A more detailed description of the classes and the operations they support is in the appendix. 

7 Computation and Storage Spectrums 

The various components of the Ra kernel and proposed components of the Clouds operating 
system may be viewed as being compositionally related in the manner displayed in Figure ??. 
The components above the dotted line represent the three kernel primitive abstractions: segment, 
isiba, and virtual space. The way in which the kernel primitive abstractions are composed was 
described in detail in Section 5. Briefly, segments abstract the notion of store and are the 
most fundamental abstraction. Isibas are constructed from two segments and by abstracting 
the notion of computation. Virtual spaces are composed by associating segments with ranges 
of virtual addresses and then storing the information describing the association in yet another 

'That is, at compile time. 
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segment. Virtual spaces abstract the notion of addressing domain and provide a means for 
manipulating virtual memory page and segment tables. 

Proposed entities appear above the dotted line and are composed of the Ra primitive ab- 
stractions. These entities may be viewed abstractly as falling within one of two spectrums, either 
the computation or storage spectrum. Entities within the storage spectrum represent successive 
specializations of the abstract notion of store. Segments, as we have said, are the most primitive. 
Virtual spaces are composed of segments. Clouds objects are composed of a structured virtual 
space and an invocation mechanism. Objects can be further refined to produce recoverable 
objects[WL86] by placing additional restrictions on the behavior of object storage. One can 
imagine the spectrum continuing with further specializations of recoverable objects. Similarly, 
variations of entities within the spectrum are possible. Given the virtual space primitive ab- 
straction, various forms of object can be composed by using alternate invocation mechanisms or 
structure. 

Parallel to the storage spectrum is the computation spectrum. Isibas represent the most basic 
form of activity. Clouds processes are then composed of one or more isibas in conjunction with a 
virtual space. Next appears the Clouds thread. Threads are composed of a possibly distributed 
collection of processes. The computation spectrum can also be viewed as a specialization hier- 
archy. Actions(WL861 are threads which make certain guarantees about the recoverability and 
atomicity of computations which run on their behalf. As with the storage spectrum, variants of 
the basic entities can be proposed and may exist concurrently within the system. 

Viewing entities in Clouds/Ra as existing on these spectrums provides a uniformity and 
structure to our system and appears as a natural result of Ra’s extensibility. System objects and 
kernel classes are the mechanisms by which entities are composed. The storage and computation 
spectrums also provide a structured approach for exploring the design space of operating system 
components . 

8 Using the Primitives 

In this section we describe the implementation of some of the basic functionality of the Clouds 
operating system using Ra’s primitive abstractions. 

8.1 Implementing Clouds 

An overview of the Clouds system was given in Section 2. Here we show how the different Clouds 
components can be built using the Ra toolkit of primitives. 
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8.1.1 Objects 

Clouds objects are structured Ra virtual spaces which which are mapped into the 0-space when 
invoked. The segments constituting an object are distinguished by various attributes which are 
based roughly on whether the segment contains code or data. For example, code segments are 
read-only, while a segment holding recoverable data has a recovery attribute which enables the 
kernel to locate the partition responsible for handling page faults on the segment. 

Objects are invocable which provides a structured means for an execution to enter and leave 
the virtual space associated with the object. Object invocations may be nested and thus consist 
of a call which transfers control to the specified operation in the desired object, and a return 
which transfers control back to the original calling object. A system object called the invocation 
manager is responsible for installing the appropriate object virtual space on object call and 
return. Consider the following typical scenario: an isiba executing in a user object invokes an 
operation on another object. A user-level object invocation appears to the Ra kernel as a request 
on a system object, the invocation manager. The kernel protected procedure call mechanism 
verifies that the specified system object, the invocation manager in this case, appears in the 
system object directory. The invocation system object is then called with four parameters: the 
invoking object, the object to be invoked, and a segment containing the object-call parameters, 
and the desired operation. When an object is found locally, the invocation manager installs the 
object’s virtual space, and “returns” by transferring control to the location in the newly installed 
object virtual space corresponding to the desired operation. A similar scenario is followed on 
object return. (Section 8.1.2). 

If the object to be invoked is not found on the local node, the invocation manager may 
solicit the help of other system objects to locate the desired object. This may be done by using 
the partition manager as described in Section 5.4 to activate the segment which contains the 
object’s descriptor, or it may involve a more complex object location policy* performed by an 
object locator system object. Both the partition manager and the object locator would typically 
perform their function by communicating with their counterparts on remote nodes. Once the 
desired object has been identified on a remote node, the object is brought (whole or partial) from 
the remote node, installed in the 0 space and execution is resumed. The partitions in charge 
of mediating accesses to the invoked object segments maintain the coherency of these segments 
among the various nodes using them. The coherency scheme is encoded in the partitions, and 
different coherency schemes can be used to maintain the consistency of different segments. 

2Such as one of those described in [Ber87]. 
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8.1.2 Threads 

Threads are the only visible active entities in Clouds. A thread is a unit of activity from the 
user’s perspective. Upon creation, a thread starts executing in an object by invoking an entry 
point in the object. Threads may span machine boundaries. 

A thread is implemented by one or more processes. A process is a virtual space with one 
isiba associated with it, plus other process-specific information - data that is logically associ- 
ated with the activity rather than with an object, such as controlling terminal, thread specific 
information, and action specific information. The process contains stack segments, one for each 
object invocation. These segments are created and destroyed in a LIFO manner. A process is 
created for each thread’s visit to a machine. 

Process management is handled by the process manager system object. A thread is created 
as follows: the process manager object creates a process virtual space that include a stack 
segment plus other thread related information. Next, it creates a segment and initializes it as 
an isiba context segment (note that only the machine independent part is initialized; the kernel 
manages the machine dependent part). The process manager sets the scheduling attributes of 
the isiba, sets the stack segment in the process virtual space as the isiba stack, and initializes the 
P space attribute to the process virtual-space and the 0 space attribute to the object virtual 
space to be invoked? The address to start execution is included in the initialization of the 
machine independent part of the control segment. Lastly, the process manager calls the isiba 
scheduler to make this isiba runnable. 

8.1.3 Synchronization 

The synchronization manger is responsible for intra-object synchronization. Each object con- 
tains one or more Zock segments. A lock segment is a read-write segment (which is protected 
for system-mode access only). It contains lock information plus associated queues that indicate 
which threads (and isibas) are waiting on a lock, if any. A thread running in an object requests a 
lock operation as follows: the thread performs a kernel call giving the synchronization manager 
as a parameter, plus lock and mode requested. The kernel routes the call to the synchronization 
manager. The synchronization manager examines the appropriate lock segment in the object, 
and determines whether or not to grant the lock request. If it decides that the isiba has to block 
waiting on the lock to be released, it makes a note of this fact in the lock segment and calls 
the isiba scheduler to block the thread. When a threads releases a lock, the synchronization 

3A thread starts its life by invoking an object. The 0 space attribute of the isiba in set to point to the virtual 
space of this object. 
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manager inspects the lock segment. If there are any waiting threads which should be granted 
the lock, a note is made in the lock segment, and the isiba scheduler is called to schedule the 
isibas unblocked by the lock release operation. 

The exact semantics of the locking schemes used are specified by the synchronization manager 
and not encoded in the kernel. Different synchronization primitives can be implemented and 
experimented with by modifying the synchronization manager. By separating the mechanisms 
of implementing synchronization variables from policies, by placing the actual synchronization 
queues and data in the object, and by entrusting system objects with the task of implementing 
the policies, we achieve a flexible synchronization mechanism which we believe will be easier to 
implement, maintain, and modify. 

9 Conclusions 

The Ra kernel is a minimal kernel for the Clouds operating system. The Ra design is modular 
and Ra supports extensibility. Ra uses the object-based paradigm supported by Clouds to 
implement Clouds, providing the first instance of an application of the paradigm. 

The implementation of Ra is under progress. Ra is being implemented on a network of Sun- 
3/60 workstations. The workstations will run Ra, and the partitions will reside on a file server 
running Unix. The partition code will run as a Unix application program. 

All user application code and user services will be implemented as a part of the Clouds 
system, and will run on top of Ra. User interfaces are not designed yet, but preliminary plans are 
to use X-windows and a Unix like shell for user interactions. Another scheme under consideration 
will use Unix as a front end user interface that allows access to Clouds. In this scheme the user 
workstation will run Unix, a set of rack mounted compute servers will run Clouds and a set of 
file servers will host the partitions, which can run under Unix, or in native mode under Ra. 
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A Kernel Classes 

The kernel classes are introduced in section 6.2. The following sections outlines the operations 
associated with each class. 

A. l  Virtual Space Class 

Activate Attach the segment containing a description of the specified virtual space 
(the virtual space descriptor) into K space and prepare to map the virtual space 
into the P or 0 space. Allocate segment and page mapping structures. 

Deactivate Deallocate segment and page mapping structures. Detach the virtual 
space descriptor from K space. 

Install Map the specified virtual space into P or 0 space. Entails constructing 
the appropriate segment and page tables and, possibly, replacing the currently 
installed virtual space. May require activating the virtual space. 

At tach  Segment Form an association between a specified segment and a range 
of addresses in a specified virtual space. Update the virtual space descriptor 
to reflect this association. May be performed either dynamically when the 
specified virtual space is either mapped in P or 0 space, or passively when the 
virtual space is not mapped. The specified segment may be either activated or 
deactivated. 

Detach Segment Dissociate the specified segment with the range of addresses in 
the specified virtual space. Note that a single segment may be mapped into 
a virtual space more than once so that detaching a segment from one location 
may not completely remove the association of the segment and virtual space. 
May be performed either dynamically or passively. 

Query-Update Read or modify current values in virtual space descriptor. 

A.2 Isiba Class 

Install Request that the specified isiba be assigned a physical processor. If none 
are currently available, place the isiba on the ready queue. A time quantum, a 
maximum execution time, and a priority level are specified with this call. The 
ready list is maintained as a priority queue. The isiba must have associated 
P and 0 space attributes, a scheduler attribute, and a privilege level. The 
isiba will receive quantum units of processor time until the maximum execution 

25 



time is reached or until it is removed. The associated P and 0 spaces may be 
installed repeatedly as a result of this operation. 

Remove Remove the specified isiba from the ready list and place it at the specified 
destination (typically a queue associated with a synchronization variable), or, 
if the operation is requested by the target isiba itself, remove the isiba from the 
processor and dispatch a new isiba. The associated P and 0 spaces may remain 
mapped if the next isiba to be dispatched has the same attributes (that is, if 
more than one isiba is executing in the specified virtual spaces). 

Query-Update Read or modify current values in isiba context segment or stack 
segment. 

A.3 Synchronization Class 

These operations are intended to be used only for synchronizing system objects. See section 
8.1.3 for a description of how inter-object synchronization can be achieved in Ra. 

Acquire Request control of synchronization variable. Parameters include type of 
synchronization variable, instance of type, and action desired (such as ‘block 
if unavailable’ or ‘return immediately’). Examples of possible synchronization 
variable types include counting semaphores, spin locks, read-write locks, events, 
etc. 

Release Return previously acquired control of a synchronization variable. Param- 
eters are as for the acquire operation. May cause blocked activities to awaiting 
the synchronization variable to be resumed. 

A.4 Device Class 

Mount  Associate a controlling system object (device driver) with a given piece of 
hardware. Involves installing the appropriate interrupt handlers and initializing 
the device. 

Unmount  Bring the specified device to quiescence and replace the associated in- 
terrupt handlers with null handlers. 

Query-Update Read or modify current values in the device registers, interrupt 
vectors, or other device-related data structures. 
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A.5 System Object Class 

Load This operation causes a window of the virtual space installed in K space 
to be mapped to the segment containing the system object code. After the 
mapping is done, it will usually be necessary to link the system object’s code 
to the rest of the kernel, performing any needed relocation of the object’s code. 
After the above is done, the specified system object is registered in the system 
object directory thereby making it available for user-level invocations. Register 
the system object’s dispatch table thereby making it available for inter-system 
object invocations. The registration step may involve the replacement of a 

previous system object which was already performing the function the new 
object is to perform. When this is the case, it will be necessary to provide a 
way of transferring information from the old object to the new one, before the 
old object is unloaded. 

Unload Remove the specified system object from the system object directory and 
remove its dispatch table. Deallocate the memory occupied by the system ob- 
ject. The unload operation will be performed only if the object being unloaded 
is not the only one containing information which is vital for the orderly opem 
tion of the system. 

Query-Update Read or modify current values in the system object directory (used 
for user-level invocations of system objects) or the system object dispatch tables 
(used for inter-system object invocations). 
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